Water Waste Minimization System

Rajshree Chandrakar¹ and Sarita Joshi²

¹²(Bhilai Mahila Mahavidyalaya, Hospital Sector, Bhilai (CG), India)

I. Introduction

A rising life standard, changing life style food habits, high rate of resources consumption pattern & population growth have put unintended negative impact on the quality of urban environment. Our cities are grippling with problems of high volume of waste, cost involved, disposal techniques & methods for beyond the handling capacities of urban government. In India annual per capita increase in waste generated is estimated as 1.1.33%. By the year 2047, this would approximately 260 million tons that wound need more than 1400 Sq. Km of land in our country. The disposal of this waste is becoming a global problem.Waste could be generally defined as that which is not required.

Water Waste is water that has been adversely affected in quality by anthro progressive influence. Waste water is a combination of the liquid or water carried wastes, removed from domestic institutions, commercial & industrial establishments together with surface/ground/storm water.

- 1. Municipal wastewater-Human excreta, solid waste, storm water.
- 2. Sewage-Domestic waste water, urine, toilets.
- 3. Seawater-Ingress high volume of scadt & microbes
- 4. Highway drainage
- 5. Storm drain-(car, shopping, trolley, tress, cattle etc)
- 6. Black water-(counters feces, urine, flush water from hush toilets)
- 7. Industrial site drainage-sill, sand, alkali, oil, chemical, residue, toxic waste, solid & emulsion.
- 8. Agriculture drainage
- 9. Hydraulic factories produced water from oil & natural gas production
- 10. Washing water rainfall collected
- 11. Urban rainfall run off from road, car parking roof

II. Waste Minimization

Waste minimization is a process of elimination that involves reducing the amount of waste produced in society and helps eliminate the generation of harmful and persistent wastes supporting the efforts to promote a more sustainable society.

III. Waste Minimization Involve

- 1. Redesigning product or changing society pattern, reducing waste generation to prevent the creation of waste.
- 2. Waste management strategies.
- 3. Waste Hierarchy

IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) e-ISSN: 2319-2402,p- ISSN: 2319-2399. Volume 1, Issue 2, PP 16-19 www.iosrjournals.org

IV. 4.Definition of Minimization

4.1Waste minimization-refers to strategies the aiming to prevent waste at source.

- **4.2On the production side**-focusing on optimizing resources & energy use and lowering toxicity level during manufacture.
- **4.3On the consumption side**-to strengthen awareness and prompt environmentally conscious consumption pattern and consumer responsibilities to reduce over all level of waste generation.

4.4 Calculating waste water volume			
Waste water type	Waste water source	L/Per	son
Black water	Toilet		20
Gray Water	Shower	63	
	Hand-wash		06
	Washing machine	13	
	Laundry taps		12
Other waste	Kitchen waste		12

4.5 Constitute of Waste Water

Suspended solid, biodegradable, organic, nutrients-(Nitrogen, Phosphorus, Nitrogen & Phosphorus pathogens) colloidal & dissolved solids, volatile organic compound, odors, metals etc.

4.6 Reuse/Recycle of Waste Water

Waste Water Treatment	
-----------------------	--

Contaminants	Treatment System	
Suspended Solids	Sedimentation	
	Screening and comminution	
	Filtration variations	
	Flotation	
	Chemical/Polymer addition	
	Coagulation/Sedimentation	
	Land treatment systems	
Biodegradable organics	Activated-sludge variations	
	Fixed film-tricking filters	
	Fixed film-rotating biological contractors	

Swami Shri Swaroopanand Saraswati Mahavidyalya Hudco Bhilai (SSSSMHB) (September – 2015)

IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) e-ISSN: 2319-2402,p- ISSN: 2319-2399. Volume 1, Issue 2, PP 16-19 www.iosrjournals.org

	Lagoon variations	
	Intermittent sand filtration	
	Land treatment systems	
	Physical-chemical systems	
Pathogens	Chlorination	
1 athogens	Hypo-chlorination	
	Ozonation	
	olonwion	
Nutrianta Nitur ann	Land treatment systems	
Nutrients Nitrogen	Suspended growth nitrification and denitrification variations	
	Fixed film nitrification and denitrification variations	
	Ammonia stripping	
	Ion exchange	
	Break points chlorination	
	Land treatment systems	
Phosphorus	Metal-salt addition	
	Lime coagulation/sedimentation	
	Biological chemical phosphorus removal	
	Land treatment systems	
Refractory Organics	Carbon adsorption	
	Tertiary Ozonation	
	Land treatment systems	
Heavy Metals	Chemical precipitation	
	Ion exchange	
	Land treatment systems	
Dissolved Inorganic Solids	Ion exchange	
-	Reverse osmosis	
	Electro dialysis	

Sludge Processing and Disposal methods

Processing Disposal Function	Treatment Method
Preliminary operations	Sludge pumping and grinding
	Sludge blending and storage
Thickening	Gravity thickening
	Flotation thickening
	Centrifugation
	Classification
Stabilization	Chlorine oxidation
	Lime stabilization
	Anaerobic digestion
	Pure oxygen aerobic digestion
	Heat treatment
Disinfection	Disinfection
Conditioning	Chemical Conditioning
	Elutriation
Dewatering	Centrifuge
	Vacuum filter
	Pressure filter
	Horizontal-belt filter
	Drying bed
	Lagoon
Drying	Dryer
Composting	Composting
Thermal reduction	Multiple health incineration
	Fluidized-bed incineration

Swami Shri Swaroopanand Saraswati Mahavidyalya Hudco Bhilai (SSSSMHB) (September – 2015)

IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) e-ISSN: 2319-2402,p- ISSN: 2319-2399. Volume 1, Issue 2, PP 16-19 www.iosrjournals.org

	Flash combustion
	Co-incineration
	Co-pyrolysis
	Pyrolysis
	Recalcination
Ultimate Disposal	Landfill
-	Land Applications

Methods of removing the contaminants from waste water

• Physical unit operations

• Chemical unit operations

Screening, Comminution, Flow Equalization, Mixing, Flocculation, Sedimentation, Flotation, Filtration, Micro screening, Chemical precipitation, Gas transfer, Adsorption, Disinfection with chlorine, Disinfection, De-chlorination, Disinfection with ozone, Racks and coarse screens, Comminutors and grinders, Grit chambers, Flow Equalization, Skimming, Flocculation, Pre-aeration, Sedimentation, Flotation, Fine screening, Imhoff and septic tanks, Chemical precipitation, Granular-medium filtration, Chlorination, Odor Control.

Biological unit processes

Asia's future demands will rise in respect drinking water needs in urban areas. Recycling is crucial-More & more; the recycle water will be required to be well utilized for uses other than drinking like.

- 1. Washing surfaces, flushing, gardening
- 2. First charge on fresh water for drinking & cooking.
- 3. Industry to recycle & reduce demand on fresh water.
- 4. Return flows to be treated for agriculture use also.

Waste Minimization Work Plan Activities

- 1. Mapping of international and national organization & their efforts
- 2. Awareness raising booklet of best practices
- 3. Guidelines for professional on household & commercial waste including package.
- 4. Capacity building of technical assistance at regional, national & local level by training & guideline.

Work Plan

- 1. Governments-Right policy frame work & legislation reduces work generation.
- 2. Industries-Integrated Re-decouping in production strategies.
- 3. **Designers & productions**-New products, dematerialization, live cycle management, eco design.
- 4. Retailers & entrepreneurs-to assess to "sustainable" products service system, distribution system.
- 5. Consumers-Making better choice, recycling scheme, shifting of product
- 6. Scavengers & waste pickers-Increase worker & better salaries